icrel, Inc.
MIC281
 
 
pril 23, 2014
11
Revision 2.0
 
Application Information
Remote Diode Section
Most small-signal PNP transistors with characteristics
similar to the JEDEC 2N3906 will perform well as remote
temperature sensors. Table 4 lists several examples of
such parts that Micrel has tested for use with the MIC281.
Other transistors equivalent to these should also work well.
Table 4. Transistors suitable for use as remote diodes
Vendor
Part
Number
Package
Fairchild Semiconductor
MMBT3906
SOT-23
On Semiconductor
MMBT3906L
SOT-23
Philips Semiconductor
SMBT3906
SOT-23
Samsung Semiconductor
KST3906-TF
SOT-23
 
Minimizing Errors
Self-Heating
One concern when using a part with the temperature
accuracy and resolution of the MIC281 is to avoid errors
induced by self-heating (V
DD
 ?I
DD
) + (V
OL
 ?I
OL
). In order to
understand what level of error this might represent, and
how to reduce that error, the dissipation in the MIC281
must   be   calculated   and   its   effects   reduced   to   a
temperature offset. The worst-case operating condition for
the MIC281 is when V
DD
  = 3.6V.The maximum power
dissipated in the part is given in the following equation:
P
D
 = [(I
DD
 ?V
DD
)+(I
OL(DATA)
 ?V
OL(DATA)
)]
P
D
 = [(0.4mA?3.6V)+(6mA?0.5V)]
P
D
 = 4.44mW
R
?J-A)
  of SOT23-6 package is 230癈/W, therefore the
theoretical maximum self-heating is:
4.44mW ?230癈/W = 1.02癈
In most applications, the DATA pin will have a duty cycle
of substantially below 25% in the low state. These
considerations, combined with more typical device and
application parameters, give a better system-level view of
device self-heating. This is illustrated by the next equation.
In   any   application,   the   best   approach   is   to   verify
performance against calculation in the nal application
environment. This is especially true when dealing with
systems for which some temperature data may be poorly
dened or unobtainable except by empirical means.
P
D
 = [(I
DD
 ?V
DD
)+(I
OL(DATA)
 ?V
OL(DATA)
)]
P
D
  = [(0.23mA? 3.3V)+(25% ? 1.5mA? 0.15V)] PD =
0.815mW
R
?J-A)
  of SOT23-6 package is 230癈/W, therefore the
typical self-heating is:
0.815mW ?230癈/W = 0.188癈
Series Resistance
The operation of the MIC281 depends upon sensing the
V
CB-E
 of a diode-connected PNP transistor (diode) at two
different    current    levels.    For    remote    temperature
measurements, this is done using an external diode
connected   between   T1   and   ground.   Because   this
technique relies upon measuring the relatively small
voltage difference resulting from two levels of current
through the external diode, any resistance in series with
the external diode will cause an error in the temperature
reading from the MIC281. A good rule of thumb is that for
each ohm in series with the external transistor, there will
be   a   0.9癈   error   in   the   MIC281s   temperature
measurement. It is not difcult to keep the series
resistance well below an ohm (typically <0.1&), so this will
rarely be an issue.
Filter Capacitor Selection
It is usually desirable to employ a lter capacitor between
the T1 and GND pins of the MIC281. The use of this
capacitor is recommended in environments with a lot of
high frequency noise (such as digital switching noise), or if
long traces or wires are used to connect to the remote
diode. The recommended total capacitance from the T1
pin to GND is 2200pF. If the remote diode is to be at a
distance of more than six-to-twelve inches from the
MIC281, using twisted pair wiring or shielded microphone
cable for the connections to the diode can signicantly
reduce noise pickup. If using a long run of shielded cable,
remember to subtract the cables conductor-to-shield
capacitance from the 2200pF total capacitance.
相关PDF资料
MIC2810-1JGMYML TR IC REG TRPL BUCK/LINEAR 16MLF
MIC284-2BMM TR IC SUPERVISOR THERM 2ZONE 8-MSOP
MIC3385-1.5YHL TR IC REG DL BCK/LINEAR SYNC 14-MLF
MIC384-1YMM IC SUPERVISR THERM LOC/REM 8MSOP
MIC5158BN IC REG CTRLR SGL FIX/ADJ 14-DIP
MIC5159BM6 TR IC REG CTRLR SGL POS ADJ SOT23-6
MIC5190BMM TR IC REG CTRLR SGL POS ADJ 10-MSOP
MIC5191BMM TR IC REG CTRLR SGL POS ADJ 10-MSOP
相关代理商/技术参数
MIC281-7YM6 TR 功能描述:板上安装温度传感器 Local and Remote Temperature Sensor with I2C Temperature Sensor in SOT23-6 (Lead Free) RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
MIC2821-4GJLYML TR 功能描述:直流/直流开关转换器 Single DC/DC + 3 LDOs w/ Indep Enables RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MIC2821-4GJLYML-TR 功能描述:Handheld/Mobile Devices PMIC 16-MLF? (4x4) 制造商:microchip technology 系列:- 包装:剪切带(CT) 零件状态:停产 应用:手持/移动设备 电流 - 电源:- 电压 - 电源:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:16-VFQFN 裸露焊盘,16-MLF? 供应商器件封装:16-MLF?(4x4) 标准包装:1
MIC2821-4GMSYML 制造商:Rochester Electronics LLC 功能描述: 制造商:RF Micro Devices Inc 功能描述: 制造商:Micrel Inc 功能描述:
MIC2821-4GMSYML TR 功能描述:直流/直流开关转换器 Single DC/DC + 3 LDOs w/ Indep Enables RoHS:否 制造商:STMicroelectronics 最大输入电压:4.5 V 开关频率:1.5 MHz 输出电压:4.6 V 输出电流:250 mA 输出端数量:2 最大工作温度:+ 85 C 安装风格:SMD/SMT
MIC2821-4GMSYML-TR 功能描述:Handheld/Mobile Devices PMIC 16-MLF? (4x4) 制造商:microchip technology 系列:- 包装:剪切带(CT) 零件状态:停产 应用:手持/移动设备 电流 - 电源:- 电压 - 电源:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:16-VFQFN 裸露焊盘,16-MLF? 供应商器件封装:16-MLF?(4x4) 标准包装:1
MIC2826-A0YMT TR 功能描述:直流/直流开关调节器 Single 500mA Step-Down and Triple 150mA LDOs with I2C Voltage Control & Sequencing RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
MIC2826-A0YMT-TR 功能描述:Processor PMIC 14-TMLF? (2.5x2.5) 制造商:microchip technology 系列:- 包装:剪切带(CT) 零件状态:停产 应用:处理器 电流 - 电源:- 电压 - 电源:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:14-UFQFN 裸露焊盘,14-TMLF? 供应商器件封装:14-TMLF?(2.5x2.5) 标准包装:1